Performance Evaluation of Powder Metallurgy Electrode in Electrical Discharge Machining of AISI D2 Steel Using Taguchi Method

نویسنده

  • C. Sharma
چکیده

In this paper an attempt has been made to correlate the usefulness of electrodes made through powder metallurgy (PM) in comparison with conventional copper electrode during electric discharge machining. Experimental results are presented on electric discharge machining of AISI D2 steel in kerosene with copper tungsten (30% Cu and 70% W) tool electrode made through powder metallurgy (PM) technique and Cu electrode. An L18 (21 37) orthogonal array of Taguchi methodology was used to identify the effect of process input factors (viz. current, duty cycle and flushing pressure) on the output factors {viz. material removal rate (MRR) and surface roughness (SR)}. It was found that CuW electrode (made through PM) gives high surface finish where as the Cu electrode is better for higher material removal rate. Keywords—Electrical discharge machining (EDM), Powder Metallurgy (PM), Taguchi method, Material Removal Rate (MRR), Surface Roughness (SR).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fatigue Life of Graphite Powder Mixing Electrical Discharge Machining AISI D2 Tool Steel

The present paper deals with the design of experimental work matrices for two groups of experiments by using Response surface methodology (RSM). The first EDM group was dealt with the use of kerosene dielectric alone, while the second was treated by adding the graphite micro powders mixing to dielectric fluid (PMEDM). The total heat flux generated and fatigue lives after EDM and PMEDM models we...

متن کامل

Experimental Investigation of the Effect of Deionized Water on Surface Roughness of Near Dry Electro Discharge Machining of AISI D2 Steel

The electro discharge machining (EDM), one of the methods used in the machining industry and a non-traditional manufacturing method, the electro erosion process does not depend on the hardness of material and offers a way to process materials of very complex geometry with very fine and high precision by using cheap electrode materials, which make it a preferred method. In this study, effect of ...

متن کامل

Surface Roughness Evaluation for EDM of En31 with Cu-Cr-Ni Powder Metallurgy Tool

In this study, Electrical Discharge Machining (EDM) is used to modify the surface of high carbon steel En31 with the help of tool electrode (Copper-Chromium-Nickel) manufactured by powder metallurgy (PM) process. The effect of EDM on surface roughness during surface alloying is studied. Taguchi’s Design of experiment (DOE) and L18 orthogonal array is used to find the best level of input paramet...

متن کامل

Parametric Study of Powder Mixed EDM and Optimization of MRR & Surface Roughness

Electrical discharge machining (EDM) is a wellestablished non-conventional machining process, used for manufacturing geometrically complex or hard and electrically conductive material parts that are extremely difficult to cut by other conventional machining processes. But sometimes poor surface finish and low volumetric material removal rate limits its use in the industry. To diffuse this probl...

متن کامل

Experimental Investigation of the Effect of Deionized Water on Surface Roughness of Near Dry Electro Discharge Machining of AISI D2 Steel

The electro discharge machining (EDM), one of the methods used in the machining industry and a non-traditional manufacturing method, the electro erosion process does not depend on the hardness of material and offers a way to process materials of very complex geometry with very fine and high precision by using cheap electrode materials, which make it a preferred method. In this study, effect of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012